
Tutorial 6

Useful Image Processing Techniques (MATLAB) for Your TurtleBot3 Practical/Project

Images in MATLAB

The basic data structure in MATLAB is the array, an ordered set of real or complex elements. This object is
naturally suited to the representation of images, real-valued ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional matrices, in which each element of the matrix
corresponds to a single discrete pixel in the displayed image. (Pixel is derived from picture element and
usually denotes a single dot on a computer display.) For example, an image composed of 200 rows and 300
columns of different colored dots would be stored in MATLAB as a 200-by-300 matrix.

Some images, such as truecolor images, represent images using a three-dimensional array. In truecolor
images, the first plane in the third dimension represents the red pixel intensities, the second plane
represents the green pixel intensities, and the third plane represents the blue pixel intensities. This
convention makes working with images in MATLAB similar to working with any other type of numeric data,
and makes the full power of MATLAB available for image processing applications.

Commonly Used Image Types

Binary Images

Image data are stored as an m-by-n logical array. Array values of 0 and 1 are interpreted as black and white,
respectively.

Grayscale Images

A grayscale image (also called gray-scale, gray scale, or gray-level) is a data matrix whose values represent

intensities within some range.

Truecolor Images (RGB)

A truecolor image is an image in which each pixel is specified by three values — one each for the red, blue,

and green components of the pixel's color. MATLAB store truecolor images as an m-by-n-by-3 data array

that defines red, green, and blue color components for each individual pixel. The color of each pixel is

https://au.mathworks.com/help/images/images-in-matlab.html
https://au.mathworks.com/help/images/image-types-in-the-toolbox.html
https://au.mathworks.com/help/images/binary-images.html
https://au.mathworks.com/help/images/grayscale-images.html
https://au.mathworks.com/help/images/truecolor-images.html

determined by the combination of the red, green, and blue intensities stored in each color plane at the

pixel's location.

To determine the color of the pixel at (2,3), you would look at the RGB triplet stored in (2,3,1:3). Suppose
(2,3,1) contains the value 0.5176, (2,3,2) contains 0.1608, and (2,3,3) contains 0.0627. The color for the
pixel at (2,3) is

0.5176 0.1608 0.0627

Image Coordinate Systems

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in which each element of the matrix

corresponds to a single pixel in the displayed image.

Often, the most convenient method for expressing locations in an image is to use pixel indices. The image is
treated as a grid of discrete elements, ordered from top to bottom, and left to right, as illustrated by the
following figure.

For pixel indices, the row increases downward, while the column increases to the right. Pixel indices are
integer values, and range from 1 to the length of the row or column.

There is a one-to-one correspondence between pixel indices and subscripts for the first two matrix
dimensions in MATLAB. For example, the data for the pixel in the fifth row, second column is stored in the
matrix element (5,2). You use normal MATLAB matrix subscripting to access values of individual pixels. For
example, the MATLAB code

 I(2,15)

returns the value of the pixel at row 2, column 15 of the image I.

https://au.mathworks.com/help/images/image-coordinate-systems.html

Instructions for the exercises: In this tutorial, the code blocks are provided in sequential order. Every code

block is explained. When you go through this tutorial, add code blocks sequentially to your MATLAB script

and run it. Add the code blocks one by one. Try to understand the first code block and see its output

(workspace values and figures). Then add the second code block and understand it, and so on. If you run

the entire script at once you will not understand the individual steps.

Exercise 1

Basic Image Import, Processing, and Export

Open a new MATLAB script and save it as Tute_6_1.m. Include the following commands in your script and

run them. lowlight_1.jpg file is given for you.

Step 1: Read and Display an Image

Read an image into the workspace, using the imread command.

 I = imread('lowlight_1.jpg');

Display the image, using the imshow function.

 imshow(I)

Step 2: Check How the Image Appears in the Workspace

Check how the imread function stores the image data in the workspace, using the whos command. You can

also check the variable in the Workspace Browser.

 whos I

Step 3: Improve Image Contrast

View the distribution of image pixel intensities. The image lowlight_1.jpg is a low contrast image. To see the
distribution of intensities in the image, create a histogram by calling the imhist function. (Precede the call
to imhist with the figure command so that the histogram does not overwrite the display of the image I in
the current figure window.) Notice how the histogram indicates that the intensity range of the image is
rather narrow. The range does not cover the potential range of [0, 255], and is missing the high values that
would result in good contrast.

 figure

 imhist(I)

https://au.mathworks.com/help/images/image-import-and-export.html

Improve the contrast in an image, using the histeq function. Histogram equalization spreads the intensity
values over the full range of the image. Display the image.

I2 = histeq(I);

figure

imshow(I2)

Call the imhist function again to create a histogram of the equalized image I2. If you compare the two
histograms, you can see that the histogram of I2 is more spread out over the entire range than the
histogram of I.

figure

imhist(I2)

Step 4: Write the Adjusted Image to a Disk File

Write the newly adjusted image I2 to a disk file, using the imwrite function. This example includes the
filename extension '.png' in the file name, so the imwrite function writes the image to a file in Portable
Network Graphics (PNG) format, but you can specify other formats.

 imwrite (I2, 'lowlight_1.png');

Exercise 2

Convert Between Image Types, Resizing, Cropping

The Image Processing toolbox includes many functions that you can use to convert an image from one type
to another.

Create a new MATLAB script and save it as Tute_6_2.m.

Step 1: Convert a truecolor image to a grayscale image.

RGB = imread('peppers.png');

imshow(RGB)

Step 2: Convert the RGB image to a grayscale image and display it.

I = rgb2gray(RGB);

figure

imshow(I)

Resize an Image with imresize Function

Step 3: Specify the Magnification Value

Resize the image I, using the imresize function and assign the resized image to J. Specify the magnifying
factor as 0.75. Google and find out how to do this.

 J = %%%write your command here%%%

Display the original image next to the reduced version.

figure

imshowpair(I,J,'montage')

axis off

Step 4: Specify the Size of the Output Image

Resize the image again, this time specifying the desired size of the output image, rather than a
magnification value. Pass imresize a vector [200 250] that contains the number of rows and columns in the
output image. If the specified size does not produce the same aspect ratio as the input image, the output
image will be distorted.

 K = %%%write your command here%%%

 figure, imshow(K)

Crop an Image

To extract a rectangular portion of an image, use the imcrop function. Using imcrop, you can specify the
crop region interactively using the mouse or programmatically by specifying the size and position of the
crop region.

Call imcrop specifying the image to crop, I, and the crop rectangle. imcrop returns the cropped image in J.

The image coordinates are given in pixels. Write your code to crop the onion image. Assign the cropped
image to L.

L = %%%write your command here%%%

figure, imshow(L)

Exercise 3

Morphological Operations

Morphology is a broad set of image processing operations that process images based on shapes. In a
morphological operation, each pixel in the image is adjusted based on the value of other pixels in its
neighborhood. By choosing the size and shape of the neighborhood, you can construct a morphological
operation that is sensitive to specific shapes in the input image.

Morphological Dilation and Erosion

The most basic morphological operations are dilation and erosion. Dilation adds pixels to the boundaries of
objects in an image, while erosion removes pixels on object boundaries.

Morphological dilation makes objects more visible and fills in small holes in objects.

Morphological erosion removes islands and small objects so that only substantive objects remain.

https://au.mathworks.com/help/images/ref/imcrop.html

Use Morphological Opening to Extract Large Image Features

You can use morphological opening to remove small objects from an image while preserving the shape and
size of larger objects in the image.

In this example, you use morphological opening on an image of a circuitboard to remove all the circuit lines
from the image. The output image contains only the rectangular shapes of the microchips.

Create a new MATLAB script and save it as Tute_6_3.m.

Open an Image In One Step

You can use the imopen function to perform erosion and dilation in one step.

Step 1: Read the image into the workspace, and display it.

BW1 = imread('circbw.tif');

figure, imshow(BW1)

Step 2: Create a structuring element.

The structuring element should be large enough to remove the lines when you erode the image, but not
large enough to remove the rectangles. It should consist of all 1s, so it removes everything but large
contiguous patches of foreground pixels.

 SE = strel('rectangle',[40 30]);

Step 3: Open the image.

BW2 = imopen(BW1, SE);

figure, imshow(BW2);

https://au.mathworks.com/help/images/use-morphological-opening-to-extract-large-image-features.html
https://au.mathworks.com/help/images/ref/imopen.html

Open an Image By Performing Erosion Then Dilation

Step 4: You can also perform erosion and dilation sequentially.

Erode the image with the structuring element. This removes all the lines, but also shrinks the rectangles.

BW3 = imerode(BW1,SE);

figure, imshow(BW3)

To restore the rectangles to their original sizes, dilate the eroded image using the same structuring
element, SE.

BW4 = imdilate(BW3,SE);

figure,imshow(BW4)

By performing the operations sequentially, you have the flexibility to change the structuring element.
Create a different structuring element, and dilate the eroded image using the new structuring element.

SE = strel('diamond',15);

BW5 = imdilate(BW3,SE);

figure,imshow(BW5)

Exercise 4

Image Region Properties

Image regions, also called objects, connected components, or blobs, can be contiguous or discontiguous.
The following figure shows a binary image with two contiguous regions.

A region in an image can have properties, such as an area, center of mass, orientation, and bounding box.
To calculate these properties for regions (and many more) in an image, you can use
the regionprops function.

Estimate Center and Radii of Circular Objects and Plot Circles

Estimate the center and radii of circular objects in an image and use this information to plot circles on the
image. In this example, regionprops returns the measured region properties in a table.

Create a new MATLAB script and save it as Tute_6_4.m.

Step 1: Read an image into workspace.

 a = imread('circlesBrightDark.png');

 figure, imshow(a)

Step 2: Turn the input image into a binary image.

bw = a < 100;

figure, imshow(bw)

title('Image with Circles')

https://au.mathworks.com/help/images/image-region-properties.html
https://au.mathworks.com/help/images/ref/regionprops.html

Step 3: Calculate properties of regions in the image and return the data in a table.

stats = regionprops('table',bw,'Centroid',...

 'MajorAxisLength','MinorAxisLength')

Step 4: Get centers and radii of the circles.

centers = stats.Centroid;

diameters = mean([stats.MajorAxisLength stats.MinorAxisLength],2);

radii = diameters/2;

Plot the circles.

hold on

viscircles(centers,radii);

hold off

Exercise 5

Identifying Round Objects

Create a new MATLAB script and save it as Tute_6_5.m.

This example shows how to classify objects based on their roundness using bwboundaries, a boundary
tracing routine.

Step 1: Read Image

Read in pills_etc.png.

RGB = imread('pillsetc.png');

Figure, imshow(RGB)

https://au.mathworks.com/help/images/identifying-round-objects.html

Step 2: Threshold the Image

Convert the image to black and white in order to prepare for boundary tracing using bwboundaries.

I = rgb2gray(RGB);

bw = imbinarize(I);

figure, imshow(bw)

Step 3: Remove the Noise

Using morphology functions, remove pixels which do not belong to the objects of interest.

Remove all object containing fewer than 30 pixels.

bw = bwareaopen(bw,30);

figure, imshow(bw)

Fill a gap in the pen's cap.

se = strel('disk',2);

bw = imclose(bw,se);

figure, imshow(bw)

Fill any holes, so that regionprops can be used to estimate the area enclosed by each of the boundaries

bw = imfill(bw,'holes');

figure, imshow(bw)

Step 4: Find the Boundaries

Concentrate only on the exterior boundaries. Option 'noholes' will accelerate the processing by
preventing bwboundaries from searching for inner contours.

 [B,L] = bwboundaries(bw,'noholes');

Display the label matrix and draw each boundary.

figure, imshow(label2rgb(L,@jet,[.5 .5 .5]))

hold on

for k = 1:length(B)

 boundary = B{k};

 plot(boundary(:,2),boundary(:,1),'w','LineWidth',2)

end

Step 5: Determine which Objects are Round

Estimate each object's area and perimeter. Use these results to form a simple metric indicating the
roundness of an object:

𝑚𝑒𝑡𝑟𝑖𝑐 =
4𝜋 × 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

This metric is equal to 1 only for a circle and it is less than one for any other shape. The discrimination
process can be controlled by setting an appropriate threshold. In this example use a threshold of 0.94 so
that only the pills will be classified as round.

Use regionprops to obtain estimates of the area for all of the objects. Notice that the label matrix returned
by bwboundaries can be reused by regionprops.

Reference: Mathworks online tutorials. Relevant web pages are linked to the blue color titles. (03 May,

2019).

